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1 Introduction

This documents presents the theory and algorithms for producing the new
WBF conversion tables from:

1. IMPs to continuous VPs; and

2. IMPs to discrete VPs.

The continuous scale gives a unique Victory Point (VP) to two decimal
places for each integer IMP margin. The discrete scale, similar to existing
WBF scales, gives a range of IMPs for each integer VP score. VP scores for
both scales range from 0 VPs for a maximum loss, to 20 VPs for a maximum
win. A drawn match results in a VP score of 10–10 to each team. If team
A wins V Victory Points, then its opponent, team B, wins (20−V ) Victory
Points.

These scales differ in two significant ways when compared to the old scales.

1. The continuous scale removes the phenomenon of ‘cusping’, where one
extra IMP gained could have led to a full extra VP. In the continuous
scale, each extra IMP leads to a non-increasing fractional gain in VPs.

2. The new discrete scale removes anomalies in the old scales. In partic-
ular, the IMP range is non-decreasing for each subsequent integer VP
score. The old WBF scales violated this concavity rule, particularly
for small IMP margins.

Both new scales (continuous and discrete) ensure that IMPs earned in a close
match are worth more than subsequent IMPs earned in a run-away match.
The new continuous scale is identical, except for some minor corrections, to
the USBF scale devised by Henry Bethe, that has been successfully used in
the round robin phases of North American team trials for some years.
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2 Theoretical Background

Both continuous and discrete scales are based on an exponential mapping
of IMPs to VPs described by the following formula

Vmap(I;V0, X) = V0 + V0

(
1−RI/X

1−R

)
; I ≥ 0 (1)

R = τ3; τ = 1
2(
√
5− 1) (2)

Remarks:

1. I is the IMP margin (a non-negative integer); V0 = 10 is the VP
score for a drawn match (i.e. Vmap = V0 when I = 0); X is the blitz
(maximum win) IMP margin determined by the formula:

X = 15
√
N (3)

where N is the number of boards played in the current match. Note
that X will in general not be an integer. The two parameters (V0, X)
allow for possible variations in the choice of VP range and blitz point
respectively.

2. Formula (3) comes from a study of some 200,000 individual board
records from BBO matches. These data indicated (when assuming
roughly equally matched teams) a symmetric distribution with zero
mean and standard deviation equal to 7.51 IMPs per board. The
distribution is highly non-normal with secondary peaks at ±6 and
±11 IMPs, due to non-vulnerable game and vulnerable game and slam
swings. If results for multiple boards are independent we can safely
use the Central Limit Theorem to infer that the standard deviation
for N boards will be 7.51

√
N IMPs. Thus the blitz point X = 15

√
N

is seen to be very close to two standard deviations from the mean.

3. Henry Bethe also inferred from World Championship and other round
robin teams matches that the median IMP margin is approximately
5
√
N IMPs. If we assign this IMP margin to a VP score of 15 VPs

(assuming a 0–20 VP scale) then about half the winning results will
lie in the range 10–15 VPs and half in the range 15–20 VPs. Commen-
surately, if V0 is the VP score for a drawn match, 2V0 is the maximum
VP score and the median condition above becomes

V ( 13X) = 3
2 V0 (4)
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Bethe also found from the same data, that between 5% and 8% of
all such encounters had margins that exceeded 15

√
N IMPs, a result

which is consistent with the roughly two standard deviations blitz
point noted in item 2. above.

4. The parameter τ is the so-called golden mean and R is its cube. Thus
τ and R are just numerical factors and to six decimal places are given
respectively by

τ = 1
2(
√
5− 1) = 0.618034; R =

√
5− 2 = 0.236068 (5)

How these factors come into the scale is a direct consequence of the
equations described in Item 6. below.

5. The mapping described by Eq(1) is a monotonic increasing and con-
cave exponential function of the IMP margin I. That is, its first and
second derivatives (with respect to I) are respectively positive and

negative. The concavity condition d2V
dI2

< 0 is regarded as an impor-
tant property of the IMP to VP conversion and ensures that VPs are
more sensitive to smaller IMP margins than to larger ones. Note that
linear conversion scales, to which the old WBF scales approximate,
have constant sensitivity at all IMP margins below the blitz point. Of
course, above the blitz point, the sensitivity is zero as each new IMP
gained has no effect on the maximum VP score (2V0 = 20) already
attained.

6. The actual motivation for the exponential scale is discussed here and
in the next two items. Non-mathematicians can safely skip these tech-
nical issues.

Let x be a hypothetical IMP margin (not necessarily an integer) and
V (x) be its corresponding VP score. We define the sensitivity S(x) of
the scale by the first derivative and the concavity C(x) by the negative
of the second derivative (which means C(x) > 0). That is

S(x) =
dV

dx
and C(x) = −d2V

dx2
(6)

Then the exponential scale defined by Eq(1) is the unique solution of
the following sensitivity equation and constraints (here A and B are
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positive constants):

S(x) = A−B V (x)
V (0) = V0

V (X) = 2V0

V ( 13X) = 3
2V0

 (7)

The sensitivity is modelled as a linear decreasing function of the VP
score. The three constraints respectively refer to the draw point, the
blitz point and the median point – all mentioned previously.

7. Other models for the sensitivity are of course possible. For example:

Sensitivity Model Conversion Scale
S(x) V (x)

A−B x Quadratic
A−B V (x) Exponential

1
A+B x Logarithmic

1
A+B V (x) Square-root

The quadratic and square-root scales tend to give extreme IMP to VP
conversions, sensitivities and concavities while the exponential and
logarithmic scales are more moderate. The WBF Scoring Panel con-
sidered all four models before adopting the exponential scale.

8. As the IMP margin is always an integer and because we round the VPs
to two decimal points, the new continuous scale is really only a pseudo-
continuous scale. We are content to refer to this scale as a continuous
scale mainly to distinguish it from the discrete scale considered later
in this report.

The continuous WBF scale requires only the function defined by Eq(1).
However, the discrete WBF scale requires its inverse. That is, given the
winner’s VP score V , the IMP mapping Imap that generates this VP value.
This is the logarithmic function

Imap(V ;V0, X) = X

[
log{1− (1−R)(V/V0 − 1)}

log(R)

]
(8)

provided V0 ≤ V ≤ 2V0. Note that both Eqs(1) and (8) apply only to the
winner’s VPs and IMPs respectively. Naturally, if I is the IMP margin,
then the winner’s and loser’s actual IMP scores must have been +I and −I
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respectively.

The next two sections describe in detail the algorithms that produce the
continuous scales (to two decimal points) and the discrete scales for any
prescribed board numbers in a given match.

3 The Continuous VP Scale

The IMP margin is any non-negative integer, whereas the continuous VP
scores are presented to two decimal places. Each IMP margin leads to a
unique VP score. The VP range is from zero VPs (maximum loss) to 20
VPs (maximum win). A draw corresponding to zero IMP margin results
in a 10–10 VP score. The algorithm below determines the winners score of
Vwin (VPs) say. Then the loser will receive Vlose = (20− Vwin) (VPs).
The pseudo-codes below should permit programmers to convert the codes
to their preferred programming language.

The IMP-to-Continuous-VP Algorithm

1. For IMP margin i = 0 to ceil(X) in steps of 1–IMP compute the VP
table

Vi = min

[
round(100 ∗ Vmap(i, V0, X))

100
, 2V0

]
(9)

i.e. for i = 0, 1, 2, · · · , ceil(X) and X = 15
√
N with N = no. of

boards.

Remarks:
ceil(X) is the ceiling-function of X defined to be the smallest integer
exceeding X (i.e. round towards infinity). The function round(Y )
takes any real number Y and rounds it to the nearest integer value.
A value ending in exactly point-five is rounded up to the next integer.
The function Vmap(i, V0, X)) is given by Eq(1). This formula essentially
gives the VP’s to two decimal places, while cutting off the maximum
VP value at 2V0 = 20 VPs.

2. The rounding in step–1 of the algorithm sometimes produces a viola-
tion of the Concavity Rule. Step–2 is designed to correct for all such
violations. Generally the corrections to V amount to only 0.01 of a
VP. The concavity rule can be represented as follows. If (Vi−1, Vi, Vi+1)
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is a sequence of three consecutive VPs corresponding to IMP margins
I = (i− 1, i, i+ 1), then the Concavity Rule states:

(Vi+1 − Vi) ≤ (Vi − Vi−1) (10)

That is, consecutive changes in the VP scale must never increase.
Computer code to correct for concavity violations depends on the first
difference operator Diff defined below.

Let V = [V1, V2, . . . , Vn] be a vector of length n. Then the first differ-
ence of V , is defined by the vector (of length (n− 1))

Diff(V ) = [(V2 − V1), (V3 − V2), . . . , (Vn − Vn−1)] (11)

The pseudo-code to correct concavity violations is presented next.

Continuous Concavity Correction

◦ Get second differences

ddV := [0,0,Diff(round(100*Diff(V)))]

◦ Get concavity violation test

TestViol := sum(ddV > 0) > 0

◦ Recursion to correct violations

while TestViol = true

m := minimum i such that ddV(i) > 0

if m > 1

V(m-1) := V(m-1) + 0.01

Recompute all ddV(i) as above

end (if loop)

TestViol := (m is not empty)

end (while loop)

Remarks:

(a) Note the expression (ddV > 0) is a vector of zeros and ones
(a boolean vector). Thus TestViol := sum(ddV>0) > 0, is a
boolean variable (0 = false, 1 = true) which determines if a con-
cavity violation has occurred. If there are no such violations,
then all the second differences ddV(i) will be either zero or neg-
ative and hence each term ddV(i)>0 will be zero (i.e. false). A
concavity violation will therefore show up as a positive sum(ddV)
and then TestViol will equal 1 (i.e. true). The two zeros at
the start of the vector ddV are necessary in order to avoid infinite
recursions.
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(b) The above routine is a recursion which will correct all such de-
tected concavity violations. For example for the case of 8 boards,
only one correction is required. However for a 60 board match 24
correction are required.

(c) The algorithm above is not unique in correcting for concavity vi-
olations. Other correction algorithms are possible, but we have
found the above to commonly require fewer iterations to remove
all violations, particularly for matches with larger numbers of
boards. These other correction algorithms, which include the
USBF scales incidentally, will differ from the recommended ver-
sion above by generally 0.01 of a VP only. So while these differ-
ences are tiny and will unlikely change the result of a tournament
(let alone a match), consistency across the bridge world will be
maintained by everyone sticking to the same algorithm.

A spread-sheet accompanying this report gives the calculated continuous
VP scales for several popular board numbers. Programmers can test their
codes by comparing with the tables in this spread-sheet.

4 The Discrete VP Scale

Generally, in major national teams events, the organizing body will want to
use the new WBF continuous scales. However it has also been anticipated
that in some lower level events (e.g. congresses and sectionals) the organiz-
ing body may prefer to stick to a discrete VP scale, perhaps to avoid the
issue of decimal point scales.

This section of the report describes the algorithm to compute discrete VP
scales which are commensurate with the new continuous scales.

We shall again describe the winners VP score which will now be an integer
value in the range [0, 20]. The mapping from IMPs to VPs while still depen-
dent on Eq(1), or more accurately on Eq(8), will no longer be one-to-one.
Several integer IMP scores will lead to the same integer VP score. Thus for
each VP score V , the mapping will generate a range of integer IMPs Ia to
Ib. The end-points of each IMP range, Ia and Ib, are generally referred to
as the ‘cusp points’.
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The IMP-to-Discrete-VP Algorithm

1. Define the mid-score VPs, Vm in the range (V0 +0.5) to (2V0 − 0.5) in
steps of 1–VP. That is,

Vm = [10.5, 11.5, 12.5, . . . , 19.5] (12)

2. Next use Eq(8) to compute the corresponding IMP scores

Im = floor{Imap(Vm; V0, X)}; m = (1, 2, . . . , 10)

The integer IMPs Im = [I1, I2, . . . , I10] determine a first-pass scale:

IMP-Margin Range VP score

[−I1, I1] 10
[I1 + 1, I2] 11
[I2 + 1, I3] 12

...
...

[I9 + 1, I10] 19
[I10 + 1, +] 20

The floor-function of X is defined to be the largest integer not exceed-
ing X (i.e. round towards minus infinity). Note that the first or draw
range of IMPs is [−I1, I1] rather than [0, I1].

3. The corresponding concavity condition for the discrete scale is:

I2 − I1 ≥ 2I1 + 1 (13)

(Ik − Ik−1) ≥ (Ik−1 − Ik−2); if k ≥ 3 (14)

That is, consecutive changes in the IMP range must never decrease.
The pseudo-code to identify and correct for concavity violations is
presented below.
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Discrete Concavity Correction

◦ Define vector J = [−(I1 + 1), I1, I2, . . . In]; (n = 10)

◦ Get second differences

ddJ := Diff(Diff(J))

◦ Get violation test

TestViol := sum(ddJ < 0) > 0

◦ Recursion to correct violations

while TestViol = true

m := minimum i such that ddJ(i) < 0

if m > 0

I(m) := I(m) - 1

Recompute all ddJ(i) as above

end (if loop)

TestViol := (m is not empty)

end (while loop)

The above algorithm to correct for discrete concavity violations is very simi-
lar to the corresponding continuous algorithm of Section 3 and can be inter-
preted in the same way. We have tested this algorithm on all board numbers
from 4 to 100 and no concavity violations were detected after the correction
recursion was employed.

4.1 Discrete Range Violations

The design of the discrete scale can generate another problem, which fortu-
nately is only a minor one. We call this problem a range violation which can
be described as follows. Using Eq(8) we can determine an IMP score Î for
a given integer VP score V̂ say, where V̂ can be any of [10, 11, 12, . . . , 20].
The Î values will not in general be integers.

We would like these Î values to be bracketed by the integer IMP ranges
computed by the discrete algorithm described above. That is, we would
like, for each i

Ii−1 + 1 ≤ Îi ≤ Ii (15)

If this inequality is not satisfied for some i in the range 2 ≤ i ≤ n, then we
have a range violation. In words, this means that the discrete IMP range
does not bracket the continuous scale from which it was derived.
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We have tested all board numbers from 4 to 100 and found only three
instances of such range violations. These occurred for board numbers:
N = (5, 6, 7) and generally the sizes of the violations were quite small. We
suggest, for the present, that we can live with these minor variations until
such time as a smarter joint concavity-range violation correction algorithm
becomes available.

The accompanying spread-sheet contains a page of discrete scales for the
same board numbers displaying the continuous scales. All these scales (both
continuous and discrete) have been computed using the algorithms described
in this report.

Please direct all technical enquiries to: Peter Buchen
email: pkbuchen@bigpond.com
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